A non-cholinergic, trophic action of acetylcholinesterase on hippocampal neurones in vitro: molecular mechanisms.

نویسندگان

  • T Day
  • S A Greenfield
چکیده

In this study neurite outgrowth from cultured hippocampal neurones was increased by addition of acetylcholinesterase acting in a non-cholinergic manner. Only monomeric acetylcholinesterase, a form of acetylcholinesterase dominant in development, increased neurite outgrowth (3-10 U/ml); moreover this effect was not blocked by active site blockers (echothiophate and galanthamine) but was sensitive to the addition of peripheral site blockers (fasciculin and BW284c51). It appears therefore that acetylcholinesterase has alternative, non-cholinergic functions, one of which could be in development, via a peripheral site. The possibility of a causal relationship between neurite outgrowth and calcium influx was explored using a spectrum of acetylcholinesterase variants, inhibitors and calcium channel blockers. Acetylcholinesterase regulation of outgrowth was shown to depend on an influx of extracellular calcium specifically via the L-type voltage-gated calcium channel. In summary, we propose that, independent of its catalytic activity, a selective form of acetylcholinesterase has a role in the development of hippocampal neurones via a selective voltage-gated calcium channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Docking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase

Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...

متن کامل

Docking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase

Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...

متن کامل

Discovering and targeting the basic mechanism of neurodegeneration: the role of peptides from the C-terminus of acetylcholinesterase: non-hydrolytic effects of ache: the actions of peptides derived from the C-terminal and their relevance to neurodegeneration.

Acetylcholinesterase (AChE) is now well-established widely as a signalling molecule with non-hydrolytic functions including trophic activity in a diverse variety of situations in both neural and non-neural tissues. We have focussed on the observation that AChE, operating as a trophic agent independent of its enzymatic action, does indeed trigger calcium entry into neurons. It is possible that A...

متن کامل

Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons.

Neuronal nicotinic acetylcholine receptors (nAChRs) are involved in cognition and may play a role in Alzheimer's disease (AD). Known inhibitors of acetylcholinesterase (AChE) are used to treat AD and are known cognitive enhancers; however, their mechanism of action relating to AD is not fully understood. We tested several AChE inhibitors, including huperzine A, tacrine, and 1,5-bis(4-allyldimet...

متن کامل

Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice.

The hippocampal formation elaborates trophic factors such as nerve growth factor (NGF) to support the cholinergic innervation it receives from the septal region. To further study the trophic interactions of this pathway, hippocampal cells from embryonic day 18 and postnatal day 21 mice were immortalized via somatic cell fusion to N18TG2 neuroblastoma cells. The hippocampal cell lines exhibit mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 111 3  شماره 

صفحات  -

تاریخ انتشار 2002